
TOWARDS A FAST NVMe LAYER FOR A DECOMPOSED

KERNEL

by

Abhiram Balasubramanian

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

December 2017

Copyright c© Abhiram Balasubramanian 2017

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF THESIS APPROVAL

The thesis of Abhiram Balasubramanian

has been approved by the following supervisory committee members:

Anton Burtsev , Chair(s) 18 Aug 2017
Date Approved

Ryan Stutsman , Member 18 Aug 2017
Date Approved

Robert Ricci , Member 18 Aug 2017
Date Approved

Kobus Van der Merwe , Member 18 Aug 2017
Date Approved

by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

Operating system (OS) kernel extensions, particularly device drivers, are one of the pri-

mary sources of vulnerabilities in commodity OS kernels. Vulnerabilities in driver code are

often exploited by attackers, leading to attacks like privilege escalation, denial-of-service,

and arbitrary code execution. Today, kernel extensions are fully trusted and operate within

the core kernel without any form of isolation. But history suggests that this trust is often

misplaced, emphasizing a need for some isolation in the kernel.

We develop a new framework for isolating device drivers in the Linux kernel. Our

work builds on three fundamental principles: (1) strong isolation of the driver code; (2)

reuse of existing driver while making no or minimal changes to the source; and (3) achiev-

ing same or better performance compared to the nonisolated driver. In comparison to

existing driver isolation schemes like driver virtual machines and user-level device driver

implementations, our work strives to avoid modifying existing code and implements an

I/O path without incurring substantial performance overhead. We demonstrate our ap-

proach by isolating a unmodified driver for a null block device in the Linux kernel, achiev-

ing near-native throughput for block sizes ranging from 512B to 256KB and outperforming

the nonisolated driver for block sizes of 1MB and higher.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vi

LIST OF TABLES . viii

ACKNOWLEDGEMENTS . ix

CHAPTERS

1. INTRODUCTION . 1

1.1 Contributions . 2
1.2 Architecture Overview . 3

1.2.1 Benefits . 4
1.3 Outline . 4

2. BACKGROUND . 6

2.1 Overview of the Linux Block Layer . 6
2.1.1 Key Concepts and Data Structures . 6

2.1.1.1 The iov iter Interface . 7
2.1.1.2 Block, Sector and Segment . 7
2.1.1.3 Request and Request queue . 8

2.2 Conventional Request Queue Interface . 9
2.3 Multi-Queue Block Layer . 9

2.3.1 MQ Block Layer Interface . 9
2.4 Life of a Block I/O . 10

2.4.1 Submission Path . 10
2.4.2 Completion Path . 13

3. DRIVER ISOLATION . 22

3.1 Introducing Isolation . 22
3.1.1 Lightweight Capability Domains . 23
3.1.2 Interprocess Communication . 24
3.1.3 Interface Definition Language . 24
3.1.4 Kernel Modules . 26
3.1.5 AC Threads and ASYNC Runtime . 27

3.2 Null Block Driver Architecture . 28
3.2.1 Configurations . 28
3.2.2 Interfaces . 28

3.2.2.1 Initialization and Registration . 28
3.2.2.2 I/O Path . 29

3.3 Isolated Null Block Driver . 30

3.3.1 Initialization . 30
3.3.2 I/O Path . 31
3.3.3 Isolation Infrastructure . 32

3.3.3.1 Access to User Applications . 32
3.3.3.2 Sharing Data Buffers . 32
3.3.3.3 Introducing Asynchrony . 34

4. RESULTS AND EVALUATION . 46

4.1 Experiment Setup . 46
4.2 I/O Load Generation . 46
4.3 Performance Evaluation . 47

4.3.1 Timing Analysis . 47
4.3.2 Fio Benchmarks . 48

4.3.2.1 Isolation Overhead . 49

5. VULNERABILITY ANALYSIS . 53

6. RELATED WORK . 56

7. CONCLUSIONS . 59

7.1 Limitations . 59
7.2 Future Work . 60

REFERENCES . 61

v

LIST OF FIGURES

1.1 Overview of isolation architecture . 5

2.1 Overview of the Linux block layer . 15

2.2 struct iov iter and struct iovec data structures . 16

2.3 Simplified version of struct bio and struct bio vec data structures 16

2.4 Representation of struct bio and its members . 17

2.5 Simplified version of struct request data structure . 17

2.6 Architecture of the MQ block layer . 18

2.7 Fio job configuration . 18

2.8 Block I/O submission path through the direct I/O layer 19

2.9 Reading completions from user space through the io getevents system call . . . 20

2.10 I/O completion path from device . 21

3.1 Key components of isolation architecture . 36

3.2 Snippet capturing IDL representation . 36

3.3 Caller and callee dispatch loop . 37

3.4 Different components of the nonisolated null block driver 38

3.5 Architecture of the isolated null block driver . 39

3.6 Simplified version of the dispatch loop using ASYNC runtime 40

3.7 Function flow through the MQ block layer to the null block driver 41

3.8 Simplified version of request processing loop in the MQ block layer 42

3.9 Memory sharing protocol between the application (fio) and the isolated null
block driver . 43

3.10 Simplified version of the request processing loop implemented using DO FINISH
and ASYNC macros . 44

3.11 The flow of an I/O request from a user application to the driver through the
MQ block layer . 45

4.1 Timing analysis of native null block driver . 50

4.2 Timing analysis of unoptimized isolated null block driver 50

4.3 Timing analysis of optimized isolated null block driver. Note that the func-
tions blk mq start request and blk mq end request execute in the background
and its execution time is not factored in the IPC cost . 51

4.4 IOPS . 51

4.5 Submission latency . 52

4.6 Completion latency . 52

vii

LIST OF TABLES

5.1 Vulnerabilities in device drivers classified based on the type of attack 55

ACKNOWLEDGEMENTS

To my life-coach, my late grandfather Ramanathan: I owe everything to you. I would

not be where I am today, if not for you; many thanks!

I would like to thank my advisor, Anton Burtsev, for guiding me through university

life and motivating me in this work. He showed immense faith in me, despite my appre-

hensions, and steered me in the right direction.

Ryan Stutsman has been instrumental in guiding me through research and graduate

school. I could always walk up to his door, whenever I had questions about my research

or coursework. He taught me how to present research ideas concisely. I have always

enjoyed the lengthy discussions at his office, and I would like to thank him for agreeing to

be on my committee.

I would also like to thank Robert Ricci for being one of the prime reasons to attend

the University of Utah for graduate school. I still vividly remember the phone call I made

from India to discuss the research opportunities. He was kind enough to explain me every

possible detail and pointed me to contact the right people matching my interests.

Charles Jacobsen and Vikram Narayanan have been a tremendous help during my

master’s program. I have had so much fun discussing new ideas and I am grateful for

having such wonderful people around. I would also like to thank my fellow lab mates

who contributed to this work: Scott Bauer, Sarah Spall, and Michael Quigley.

Special thanks to my mother Lalitha for her undying encouragement and love through-

out my life. At last, I would also like to thank my family and friends for the continuous

support throughout my years of study.

The work presented in this thesis was supported by the National Science Foundation

under Grants No. 1319076 and No. 1527526.

CHAPTER 1

INTRODUCTION

A typical monolithic operating system (OS) used today [24, 26, 28, 29, 33] runs numer-

ous kernel extensions including device drivers, filesystems, and storage stacks tightly

intertwined with the core kernel. These extensions are fully trusted, co-exist in the same

address space of the OS kernel, and have unfettered access to kernel data structures. But

evidence reveals that this trust is often misplaced. Due to the lack of isolation across kernel

subsystems, kernel vulnerabilities are routinely discovered and exploited particularly in

kernel extensions, resulting in a poor overall security of an operating system.

In 2016, the Common Vulnerabilities and Exposures (CVE) database lists 217 Linux

kernel vulnerabilities that lead to denial-of-service (DoS), memory corruption, and other

exploits [31]. Despite the diverse nature of the vulnerabilities, exploitable vulnerabilities

are particularly dangerous because they allow an attacker to write arbitrary values to sen-

sitive kernel data structures, overwrite kernel memory to execute attacker-defined code,

etc. For instance, CVE-2016-8633 [11] reports an arbitrary code execution vulnerability in

the FireWire driver allowing remote attackers to execute arbitrary code via crafted frag-

mented packets. The driver lacked input validation while handling incoming fragmented

datagrams, which led to a copy of data past the datagram buffer, enabling the attacker to

execute code in kernel memory.

Several protection mechanisms have been developed to confine the effects of vulnera-

ble code. For instance, static and dynamic mechanisms like stack guards and address space

layout randomization (ASLR) have been designed to protect the kernel from arbitrary code

execution [10, 35], but attackers always come up with new ways to defeat these protection

techniques [34]. Lack of isolation implies that, once a monolithic OS like Linux is breached,

the attacker has full control over a system, thereby bypassing any protection guarantees

the system may have had. This strongly emphasizes a need for isolating kernel extensions

2

to improve the overall security of an operating system.

In this work, we focus on isolating device drivers in the Linux kernel because they

introduce a significant fraction of vulnerabilities to the kernel. Our analysis of kernel

vulnerabilities in 2016 reveals that out of 217 kernel vulnerabilities, 54 were from device

drivers, 33 were from the network subsystem, and 22 were from the filesystem layer of

the kernel. Device drivers account for the primary source of vulnerabilities. First, they are

vulnerable to malformed input from userspace applications, allowing attackers to write ar-

bitrary data into kernel memory, execute code with kernel privileges, etc. Second, by their

very nature, they handle complex asynchronous semantics like interrupts, hotplug events,

and parallel threads of execution, making them vulnerable to programming errors. Finally,

drivers also copy data from devices into kernel memory, allowing a slew of possibilities

for an attacker to gain control of the system.

Several projects in the past have attempted to isolate device drivers to confine the

effects of faulty driver code [14, 23, 30, 39, 40] (refer to Chapter 6). However, we argue that

these efforts either compromise performance for safety or require significant development

effort. In this work, we explore the feasibility of isolating device drivers in Linux, in a way

that improves security and performance, while also being transparent to the source.

Thesis Statement: Unmodified drivers can be isolated with little effort while not

compromising performance.

1.1 Contributions
In this work, we develop general techniques for isolating high-performance device

drivers in the Linux kernel. We demonstrate the feasibility of our approach by developing

an isolated driver for a null block device. In this process, we present a detailed analysis of

I/O submission and completion paths in the Linux kernel. On top of the available tech-

niques for isolation developed in our previous work [20], we add the following support

for isolating device drivers: (a) provide infrastructure for driver modules to communicate

with user space processes; (b) modify the user application to implement a zero-copy data

path from application to the isolated driver; and finally, (c) we introduce asynchronous

behavior in kernel code to improve I/O performance. In order to understand the security

guarantees of our system, we classify the Linux kernel vulnerabilities in driver modules

3

reported in 2016 and discuss the types of vulnerabilities addressed by our framework.

1.2 Architecture Overview
Figure 1.1 depicts the overall architecture of our system. The primary objective is to

provide strong isolation for the unmodified driver code in a lightweight manner. For

strong isolation guarantees, we rely on hardware-assisted virtualization (Intel VT-x), be-

cause with VT-x, we can isolate code in separate address spaces and also restrict access

to privileged registers. Our isolation architecture comprises two parts, the isolated and

nonisolated part. The isolated part runs the unmodified driver code inside an Intel VT-x

container and we refer to these containers as Lightweight Capability Domains (LCDs). On

the other hand, the nonisolated part runs a native Linux kernel that boots and executes

as before and also embeds a type 2 hypervisor (Microkernel as shown in Figure 1.1) to

manage the LCDs. This implies that we introduce a microkernel architecture within the

Linux kernel without affecting the rest of the system.

Since the code inside an LCD is isolated, it can no longer invoke kernel functions

directly or interact with the rest of the system using shared memory. We provide a small

library, liblcd, within the LCD, to provide minimal infrastructure like memory allocation

and synchronization primitives. We also provide another library, kliblcd, which provides

a similar interface for the nonisolated code to interact with an LCD.

By design, we do not share anything with or among the LCDs. The glue layer provides

access to core Linux functions that are not provided by liblcd. For instance, the glue layer

intercepts the register_blkdev function invoked by the isolated driver and translates it

into an IPC message. The libfipc library, implemented as a part of liblcd, provides a

message passing interface to the isolated code. The glue layer seamlessly translates shared

memory interaction patterns into message passing, providing an illusion to the isolated

code that it still operates in a shared memory environment. We also install a layer of glue

code in the nonisolated part to receive the IPC message for register_blkdev, invoke the

real kernel function, and return the response to the LCD through another IPC message.

4

1.2.1 Benefits

We argue that there are several benefits to our approach: First, we eliminate the need

for a full OS stack inside the LCD to resolve the dependencies of the unmodified driver.

We keep the liblcd as small as possible and address all other dependencies using glue

code. We construct the glue code systematically based on a set of decomposition patterns

that provide straightforward steps for translating shared memory protocols into message

passing. Second, we eliminate the manual effort of developing glue code by using an

Interface Definition Language (IDL) and a compiler that translates the IDL into glue code.

Finally, our fast asynchronous IPC mechanism, provided by a library libfipc [3], allows

us to perform cache-line aligned message transfers to improve the communication be-

tween the isolated driver and nonisolated kernel. These benefits made it feasible to isolate

the null block driver in Linux kernel. We also believe that it is possible to decompose and

isolate other drivers without actually having to re-write it from scratch and still achieve

near-native performance.

1.3 Outline
The rest of the thesis is laid out as follows. Chapter 2 provides background information

such as basic concepts of the block layer, architecture of the Multi-Queue block layer, and

describes the I/O path in detail. Chapter 3 introduces our isolation approach, describes

different techniques used for isolation, and provides a description of how the null block

driver is isolated. Chapter 4 summarizes our results and evaluation. Chapter 5 presents

our vulnerability analysis. Chapter 6 discusses related work. Chapter 7 presents our

conclusions and future work.

5

Null block driver
register_blkdev()

liblcd
Glue

MicrokernelkliblcdGlue

Null block LCD

Async
IPC Ring
Buffers

Linux Kernel

Non-isolated
part

Isolated part

Linux
Interface

VMCALL
Interface

register_blkdev() {
 ...
}

libfipc

Block layer Klcd module

Figure 1.1. Overview of isolation architecture

CHAPTER 2

BACKGROUND

This chapter describes the basic concepts of the Linux block layer, key data structures

used by the kernel to represent an I/O request, and finally, the I/O submission and com-

pletion paths in the kernel. It is helpful for the reader to understand the control flow and

data structures involved in the I/O path since they benefit in comprehending the isolation

of the null block driver described in the next chapter.

2.1 Overview of the Linux Block Layer
The block layer is a kernel subsystem that is responsible for handling block devices like

hard disks, solid state disks (SSDs), and CD-ROMs in the system. Managing block devices

naturally brings in a complexity owing to the nature of these devices. Unlike character

devices (e.g., keyboards and printers), where data is always read/written sequentially,

access to block devices are entirely random. Apart from user applications, other parts

of the kernel also access the block I/O subsystem. For instance, the virtual memory

subsystem moves inactive pages in the memory to a block device to make system resources

available. If the block I/O subsystem is not well tuned, it can affect the performance of an

entire system. For these reasons, the kernel maintains a separate subsystem to abstract the

complexity of block devices and provide useful block-related services to other parts of the

kernel.

2.1.1 Key Concepts and Data Structures

The block layer is the main interface between applications and the storage medium.

Applications submit I/O requests to the kernel via a system call. Each I/O request con-

tains information such as the address of the data buffer, size of the request, the opcode

(read/write), and the type (asynchronous/synchronous). Depending on the type, the I/O

request enters the kernel either through the asynchronous I/O (AIO) or the virtual filesys-

7

tem (VFS) layer of the kernel, as shown in Figure 2.1. Before we delve into the I/O path, we

will briefly explain the data structures used by the kernel to represent an I/O at different

stages. NOTE: All the source code listings/file names shown in the upcoming sections

refer to the Linux kernel v4.8.4.

2.1.1.1 The iov iter Interface

A user application submits a buffer representing user data to the kernel through a

system call. The user buffer is either passed as a single buffer or as a vector of buffers repre-

sented by struct iovec (as defined by the POSIX standard). In both the cases, the kernel

converts them into a kernel-equivalent struct iovec. The kernel employs an iterator, rep-

resented by struct iov_iter, to make buffer processing simpler and less error-prone [22].

Figure 2.2 shows the important members of these data structures. The iov_iter can also

be defined on other kernel data structures like struct bio_vec or struct kvec. The type

field determines the type of the iterator. Other members of iov_iter include: iov_offset,

which points to the offset of the data in the first iovec; count, which refers to the total

size of the data buffer; and nr_segs, which holds the total number of struct iovec data

structures passed from the user application.

2.1.1.2 Block, Sector and Segment

The kernel uses the following abstractions to describe the location of data on block

devices. First, a sector is the smallest addressable unit on a block device. In most cases, the

size of a sector is 512 bytes, and it is never possible to issue a transfer less than a sector

size. Second, a block represents the basic unit of addressing for the VFS and filesystem

layers in the kernel. A block typically contains one or more sectors, and the size of a block

is never more than the page size. When the kernel accesses file data on a block device, it

issues accesses in block units that correspond to one or more adjacent sectors on the device.

Finally, a segment is a region of memory that includes chunks of data that belong to nearby

sectors on the disk.

Historically, a disk block was represented by a struct buffer_head in host memory

and was also considered to be a unit of block I/O. Since buffer_heads could only de-

scribe a single page in memory, large block I/O operations had to be broken into several

buffer_head units. This resulted in increased memory overhead as buffer_heads were

8

large and led to the introduction of struct bio data structure, the basic unit of block I/O

operations in the Linux kernel today.

The struct bio treats I/O operations as a list of segments and also allows the kernel

to represent a block buffer with multiple locations scattered in memory (scatter-gather

I/O). Figure 2.3 shows the fields of struct bio. The important members are bi_io_vec

and bi_vcnt. The bi_io_vec field represents an array of struct bio_vec structures,

and bi_vcnt is the total number of such elements. Each bio_vec structure represents a

single segment, described by the <bv_page, bv_len, bv_offset> tuple. An array of such

bio_vec structures point to multiple pages in memory, thereby allowing a single buffer to

be scattered anywhere, as shown in Figure 2.4.

Not all I/O requests from the application result in a disk access because of data caching

performed by the kernel in the page cache. When the kernel issues an I/O to a block device,

it first obtains the block number corresponding to the data by contacting the mapping

layer. At this point, the kernel constructs a struct bio, populates it with the mapping in-

formation and user data from the struct iovec, and dispatches to the block layer through

the submit_bio interface, as shown in Figure 2.1.

2.1.1.3 Request and Request queue

Within the block layer, the kernel maintains two data structures: struct request and

struct request_queue. A struct request represents an I/O request in the block layer.

It embeds a list of bios to support multiple block operations as shown in Figure 2.5. On

the other hand, a struct request_queue represents the queue into which these requests

are buffered.

Each request has a list of bios described by the members bio and bio_tail, respec-

tively. The queuelist member points to the request_queue (implemented as a doubly

linked list) to queue the requests. The __sector and __data_len specify the sector where

the data transfer starts and the length of the transfer, respectively. When the requests

reach the block device driver, nr_phys_segments is used to identify the total number of

segments required to perform the scatter-gather DMA operation. In the next section, we

will talk about the request_queue in detail.

9

2.2 Conventional Request Queue Interface
Every block device maintains a request_queue to queue pending I/O requests. The

conventional block layer offered a single request_queue for each block device. Although

it catered to the needs of rotational media, it proved to be a bottleneck for modern SSDs,

which are capable of handling more than a million Input/output operations per second

(IOPS). The block layer had to synchronize shared accesses to the request_queue using a

lock, whenever I/O requests were inserted or removed, during optimizations like merg-

ing and scheduling, and also while remote memory accesses across CPU cores. The effect

of lock contention was severe on NUMA-factor machines, thereby limiting the submission

rate of requests to request_queue. These reasons led to a complete redesign of the block

layer and the introduction of the Multi-Queue block layer [6].

2.3 Multi-Queue Block Layer
The Multi-Queue (MQ) block layer introduces two levels of queues, software staging and

hardware dispatch queues, to address the scalability issues in the conventional block layer

and also to exploit parallelism in software. The software staging queues are configured

based on the number of CPU cores in the system, and aim to reduce the lock contention

with a single request_queue. The hardware dispatch queues provide a second level of

buffering to prevent device buffer overflow problems. The software and hardware staging

queues together make the request_queue interface of the MQ block layer. In the next

section, we will describe the software interface of the MQ block layer.

2.3.1 MQ Block Layer Interface

To use the services of the MQ block layer, a block device driver has to register itself with

the MQ block layer. Figure 2.6 depicts the details of the interaction between a block driver

and the MQ block layer. The following events happen during the registration process:

1. The driver invokes blk_mq_alloc_tag_set() to register itself with the MQ block

layer. The function takes a pointer to a blk_mq_tag_set structure that contains a set

of function pointers, number of hardware queues supported by the device, depth of

each queue, etc.

2. The function pointers defines the interface between the driver and the MQ block

10

layer. The critical interfaces are as follows:

(a) queue_rq(): pass I/O requests to the device.

(b) map_queue(): map the hardware queues to the software queues.

(c) complete(): complete outstanding I/O requests.

(d) poll(): poll for completion events from the device (alternative for interrupts).

(e) Other interfaces like init_hctx_fn() and exit_hctx_fn() are used to initial-

ize/tear down matching hardware structures in the driver.

3. To initialize a request_queue for a block device, blk_mq_alloc_tag_set() invokes

the blk_mq_init_queue() function. This function creates software and hardware

staging queues in the block layer and maps them to actual device queues allocated

by the device driver.

2.4 Life of a Block I/O
Up to this point, we have explained the required background information necessary to

understand the rest of the sections covered in this thesis. In this section, we will describe

the I/O submission and completion paths through the direct I/O and MQ block layer of

the Linux kernel. We will use Flexible I/O generator (fio) [21] in the example that follows,

to generate I/O load, so that the reader can understand how to create I/O traffic from

user-level. The job description file for the analysis is shown in Figure 2.7.

We perform direct device access (direct = 1) against a null block device represented

by filename=/dev/nullb0. We use libaio as the ioengine to overlap I/O submissions.

Other parameters include: bs=512, the size of the I/O we submit; iodepth=8, the max-

imum I/O units in flight; and iodepth_batch=8, the number of I/O units that can be

batched in a single system call to the kernel. It is recommended to read the below sections

while also referring to the Linux kernel source v4.8.4.

2.4.1 Submission Path

Figure 2.8 depicts the block I/O submission path through the direct I/O layer of the

Linux kernel.

11

• fio issues I/O requests to the kernel using the io_submit system call. It queues an

array of I/O requests represented by struct iocb, where each iocb holds the user

data buffer, size, and the opcode (read/write) of the operation.

• The io_submit system call invokes aio_run_iocb to translate the iocb into iov_iter,

the Linux kernel’s internal abstraction (refer to Section 2.1.1.1). The function also

associates a callback for every iocb to be invoked during the completion path. The

callback function, aio_complete, is stored in the ki_complete member of iocb .

• Depending on the type of operation (read), aio_run_iocb invokes the corresponding

file operations callback for the target of the I/O. Recall that the file on which our

operations will be performed is a block device file, /dev/nullb0. Its file operations

are defined in fs/block-dev.c, including generic_file_read_iter that handles

read.

• generic_file_read_iter invokes blkdev_direct_IO, which is the callback for di-

rect I/O operations.

• The main workhorse within blkdev_direct_IO is do_blockdev_direct_IO. It main-

tains two data structures, struct dio and struct dio_submit, to capture the state

of direct I/O operations.

• The do_blockdev_direct_IO function first allocates a dio and stores the iocb to re-

trieve it during the completion path. It then populates dio_submitwith block-related

information and invokes do_direct_IO.

• This function obtains the pages (struct page) backing the user buffer by calling

get_user_pages_fast, obtains the block number of the corresponding page, and

invokes submit_page_section. Recall that the user buffer is passed through the

iocb. Also note that the kernel avoids copying the user buffer into kernel memory.

• The final work of do_blockdev_direct_IO is to submit the I/O to the block layer.

Before that, it constructs the bio descriptor (recall that bio is the basic unit of block

I/O in the kernel) by invoking dio_new_bio, populates bio with information from

dio_submit, stores the dio pointer in bi private member for handling completions,

and finally transfers it to the block layer via a call to submit_bio.

12

• For every bio allocated, a callback is set in the bi_end_io member of bio to point

to either dio_bio_end_aio or dio_bio_end_io depending on the mode of submis-

sion. This callback will be invoked when the device posts a completion event (refer

to Section 2.4.2). In our case, bi_end_io will be set to dio_bio_end_aio since we

submitted requests asynchronously.

• The submit_bio function translates the bios to requests and queues them into the

per-process plug (represented by struct blk_plug) before transferring them to the

device driver.

• The concept of plugging allows the I/O submitting process to accumulate a set of

requests to better utilize the bandwidth of the hardware and also to allow merging

of sequential requests into a single large request.

• When a specific number of requests have been accumulated, the plug is flushed

and the requests are sent to the device driver for setting up DMA operations. If

not, submit_bio returns to where the I/O originated from, i.e., do_io_submit. This

function calls blk_finish_plug to flush the queued requests to the device driver.

• The reason behind flushing the plug at this point is because we are about to return

to user space after the system call and by the very definition of direct I/O, the I/O

must have been submitted to the device.

• The blk_finish_plug invokes blk_mq_flush_plug_list to flush the I/O requests

to the software staging queues of the MQ block layer.

• The I/O requests from the software staging queues are emptied into a specific hard-

ware dispatch queue by __blk_mq_run_hw_queue.

• Finally, the __blk_mq_run_hw_queue flushes the hardware dispatch queue to the de-

vice driver through the q->mq_ops->queue_rq interface of the driver (refer to Section

2.3.1).

Since we used asynchronous mode of submission (ioengine=libaio), the submis-

sion path returns to the user space without waiting for I/O completions. The user

13

application can either poll or invoke a system call to obtain the I/O completions.

This will be the main focus of understanding in the next section.

2.4.2 Completion Path

For every I/O request submitted to the device, a completion is posted by the device

to indicate that the I/O request has been processed. The block device driver forwards the

I/O completions to the block layer to signal the status of an I/O request to the application

process. For the sake of understanding, we analyze the completion path with device

interrupts. Also note that the completion path will unwrap each of the data structures

we encountered in the submission path in the reverse order (from request to bio to dio to

iocb).

• When the device triggers an interrupt, the kernel invokes the corresponding inter-

rupt handler registered for the interrupt. To forward the completion event to the

upper layer, the driver identifies the request for which the completion has arrived.

• The driver uses a unique identifier called the tag in the completion message to obtain

the matching request. The MQ block layer associates every request with a tag and

provides a helper function, blk_mq_tag_to_rq, to obtain the corresponding request

for a tag. Note that this is the first stage of unwrapping.

• The driver invokes blk_mq_end_request to forward the I/O request to the MQ

block layer. The struct request has all the information for the MQ block layer

to complete the I/O request.

• blk_mq_end_request invokes blk_update_request to perform accounting on the

I/O request and calls req_bio_endio. Since a single request can have a list of bios

embedded in it, req_bio_endio iterates over the bios by calling bio endio. Note

that this is the second stage of unwrap where we obtain the bios from the request.

• Recall that for every bio submitted to the block layer, the callback pointer that was

set (dio_bio_end_aio) during the I/O submission path (refer to Section 2.4.1) will be

invoked to forward the completion to the application process.

14

• dio_bio_end_aio invokes dio_bio_complete to retrieve the struct dio that was

stored in the bi_private member of bio during the I/O submission. This marks

another stage of unwrap where we obtain the dio from struct bio.

• Up to this point, we have explained the path from the device interrupt until the

callback to application (fio, in our example) and also the how the different data

structures are related to one another.

• The final stage of unwrap happens inside dio_complete as it obtains the iocb pointer

stored in the dio and invokes the callback to the application process. Recall that the

callback function aio_complete was stored in the ki_complete member of iocb.

• The aio_complete call notifies an event in the ring buffer maintained in the AIO

layer to indicate the completion of an iocb. The application process can either invoke

the io getevents system call or poll the ring buffer directly from user space to read

the completion events. Figures 2.9 and 2.10 depict the completion path in detail.

15

Applications

op
en

re
ad

w
rit

e

cl
os

e

Page
cache

m
m

ap

struct bio
­ sector
­ sector cnt
­ bio_vec list
­ bio_vec cnt

Block I/Os
(BIOs)

struct bio
­ sector
­ sector cnt
­ bio_vec list
­ bio_vec cnt

BIOs

Cfq/
Noop/

deadline

Request
queue

BIOs

I/O scheduler

Requests

Multi-queue

..
S/W

queues

H/W
dispatch
queues

Requests

Device driver

struct request
­ sector
­ bio

struct request
­ sector
­ bio
­ request_queue

Block device

Block Layer

Storage
stack

Direct I/O

io
_s

ub
m

it

aio VFS/Filesystem

Mapping layer

BIOs

kernel

submit_bio

user

Figure 2.1. Overview of the Linux block layer

16

/∗ <uapi/linux/uio.h> ∗/
struct iovec {

void user ∗iov base;
kernel size t iov len;

};

/∗ <linux/uio.h> ∗/
struct iov iter {

int type;
size t iov offset;
size t count;

union {
const struct iovec ∗iov;
const struct kvec ∗kvec;
const struct bio vec ∗bvec;

};
unsigned long nr segs;

};

Figure 2.2. struct iov iter and struct iovec data structures

/∗ <include/linux/blk types.h> ∗/
struct bio {

struct bio ∗bi next; /∗ request queue link ∗/
struct block device ∗bi bdev;

...
struct bvec iter bi iter;
unsigned short bi vcnt; /∗ how many bio vec’s ∗/
struct bio vec ∗bi io vec; /∗ the actual vec list ∗/

...
/∗ Simplified structure, other members not shown ∗/

};

/∗ <include/linux/bvec.h>∗/
struct bio vec {

struct page ∗bv page;
unsigned int bv len;
unsigned int bv offset;

};

struct bvec iter {
sector t bi sector; /∗ device address in 512 byte sectors ∗/
unsigned int bi size; /∗ residual I/O count ∗/
unsigned int bi idx; /∗ current index into bvl vec ∗/
unsigned int bi bvec done; /∗ number of bytes completed in current bvec ∗/

};

Figure 2.3. Simplified version of struct bio and struct bio vec data structures

17

Memory

bv_offset

bv_len

bv_page

bio_vec

0

4096

bi_io_vec

bi_vcnt

bi_next

bio

2

bi_io_vec

bi_vcnt

bi_next NULL

bio

1

bv_offset

bv_len

bv_page

bio_vec

0

4096

bv_offset

bv_len

bv_page

bio_vec

0

4096

Block
device

Segment

8

Sector
no.

25

32

41

sector size =
512 bytes

16 sectors =
8192 bytes

8 sectors =
4096 bytes

Figure 2.4. Representation of struct bio and its members

struct request {
struct list head queuelist;
struct request queue ∗q;

...
/∗ the following two fields are internal, NEVER access directly ∗/
unsigned int data len; /∗ total data len ∗/
sector t sector; /∗ sector cursor ∗/
struct bio ∗bio;
struct bio ∗biotail;

...
/∗ Number of scatter−gather DMA addr+len pairs after
∗ physical address coalescing is performed.
∗/

unsigned short nr phys segments;
...
};

Figure 2.5. Simplified version of struct request data structure

18

Submit I/O

Device driver

Software staging
queues

Hardware
dispatch queues

Multi-Queue
block layer

ctx 0 ctx n

...

...

...

Block Device
(submission + completion queues)

blk_mq_ctx

blk_mq_hctx

R
eq

ue
st

 Q
ue

ue

hctx 0

CPU 0 CPU 1 CPU 2 CPU n

hctx n

blk_mq_init_queue(tagset)

blk_mq_ops

nr_hw_queues

blk_mq_make_request ()

blk_mq_run_hw_queue()

q->mq_ops->queue_rq()

q->mq_ops->map_queue()

Figure 2.6. Architecture of the MQ block layer

[global]
direct=1
filename=/dev/nullb0
numjobs=1
iodepth=1
ioengine=libaio
rw=read
mem=mmapshared

; 512 bytes read
[512−bs−iod=8]
bs=512
iodepth=8
iodepth batch=8
size=1024M

Figure 2.7. Fio job configuration

19

fs
/a
io
.c

m
m
/fi
le
m
ap
.c

S
Y
S
C
A
LL

io
_s

ub
m

it

do
_i

o_
su

bm
it

bl
k_

st
ar

t_
p
lu

g
bl

k_
fin

is
h
_p

lu
g

io
_s

ub
m

it_
on

e

bl
k_

flu
sh

_
pl

ug
_l

is
t

ai
o_

ru
n_

io
cb

im
po

rt
_s

in
gl

e
_r

an
g
e

fil
p-

>
f_

op
->

re
a
d_

ite
r

io
v_

ite
r_

in
it

lib
/io

v_
ite

r.c

ge
ne

ric
_f

ile
_r

ea
d_

ite
r

fs
/b
lo
ck
_d

ev
.c

bl
k_

m
q
_f

lu
sh

_p
lu

g_
lis

t

__
bl

k_
m

q_
ru

n_
hw

_q
ue

ue

q-
>
m

q
_o

ps
->

q
ue

ue
_r

q

m
ap

pi
ng

->
a_

op
s-

>
di

re
ct

_I
O

bl
kd

ev
_d

ire
ct

_I
O

fs
/b
lo
ck
_d

ev
.c

fs
/d
ire

ct
-io

.c

bl
oc
k/
bl
k-
co
re
.c

do
_b

lo
ck

de
v_

di
re

ct
_I

O

do
_d

ire
ct

_I
O

di
o_

se
n
d_

cu
r_

pa
ge

di
o_

bi
o_

su
bm

it

su
bm

it_
p
ag

e_
se

ct
io

n
di

o_
ge

t_
pa

ge
di

o_
ne

w
_b

io

su
bm

it_
b
io

ge
ne

ri
c_

m
ak

e
_r

eq
u
es

t

bl
k_

[m
/s

]q
_m

ak
e_

re
qu

es
t

Fi
gu

re
2.

8.
Bl

oc
k

I/
O

su
bm

is
si

on
pa

th
th

ro
ug

h
th

e
di

re
ct

I/
O

la
ye

r

20

SYSCALL

io_getevents

read_events

aio_read_events

aio_read_events_ring

Figure 2.9. Reading completions from user space through the io getevents system call

21

block/blk-mq.c

DEVICE_INTERRUPT

int_hdlr

blk_mq_end_request

blk_update_request

block/blk-core.c

blk_account_io_completion req_bio_endio

bio_endio

block/bio.c

bio->bi_end_io

fs/direct-io.c

dio_bio_end_aio

dio_bio_complete dio_complete

dio->iocb->ki_complete

aio_complete

fs/aio.c

Figure 2.10. I/O completion path from device

CHAPTER 3

DRIVER ISOLATION

This chapter introduces our principles of isolation and describes the different tech-

niques used to isolate the null block driver.

3.1 Introducing Isolation
We develop a general framework, Lightweight Capability Domains (LCDs), for de-

composing a fully featured commodity operating system kernel. We extend a commodity

kernel like Linux with a general capability-based microkernel interface. This interface

enables to execute isolated subsystems along with the rest of the kernel, thereby providing

a path for incremental decomposition and an environment for decomposing subsystems

on the fly. We also develop a set of general techniques to decompose common code

patterns like function pointers, shared data structures, etc.

Since one of our main objectives is to avoid running an entire OS inside an LCD, we

develop lightweight interposition layers to handle the dependency of the isolated code. We

use an Interface Definition Language (IDL) to capture common interaction patterns in code

and a compiler to generate source-level compatible code with the non-decomposed sub-

system. The generated code provides an illusion to the isolated code by replicating state

and synchronizing through message passing. To make decomposed subsystems faster on

modern hardware, we develop a fast cross-core asynchronous communication mechanism

that exploits the behavior of cache-coherence protocol. Finally, to efficiently use the CPU

core during blocking cross-domain calls, we introduce a lightweight execution model that

supports composable asynchronous threads. These threads overlap blocking invocations

with computation by performing a lightweight context switch to another thread. In the

following sections, we will briefly go through the techniques discussed in [20] and show

how a device driver like null block can be isolated using them. Figure 3.1 depicts the

overall architecture of our system.

23

3.1.1 Lightweight Capability Domains

We make several careful design choices to simplify development. We rely on hardware-

assisted virtualization (VT-x) to isolate code inside an LCD. Even though context switching

into a VT-x domain is expensive and slower compared to traditional address spaces, we

still rely on VT-x to isolate code. VT-x is relatively easier to program, offers a convenient

interface to handle device passthrough, and, more importantly, provides separate address

space to execute isolated code. We do not allow LCDs to perform context switches often.

To collectively manage the LCDs, we install a small microkernel inside the Linux ker-

nel. Similar to seL4 [17], the LCD microkernel implements a capability-mediated interface

(VMCALL interface) that explicitly controls all communication across isolated subsystems.

The microkernel uses capabilities to explicitly track the resources like physical memory,

IPC channels, etc., accessed by an LCD. It also maintains a capability space or CSpace for

an LCD to store every object owned by it along with its access rights. The (object, access

rights) pair is referred to as capabilities. Although the LCD microkernel is similar to the

KVM virtual machine monitor in the Linux kernel, it provides a more general interface for

development of semantically rich decomposed subsystems, other than merely providing

low-level CPU virtualization.

Though LCDs run independently from the rest of the kernel, they still require a ker-

nel environment to handle common primitives like memory allocation, synchronization,

string manipulation, etc. We provide a small library, liblcd, within the LCD to provide a

lightweight kernel environment for the isolated code. We also insist that the nonisolated

code use a similar interface to interact with an LCD. For this purpose, we provide a

symmetrical library, kliblcd, for the nonisolated code. This interface allows the noniso-

lated code to communicate with the microkernel through the capability-mediated interface

rather than directly accessing the internal data structures. But this cannot be strictly en-

forced because the nonisolated kernel code has full control over the entire system. How-

ever, the threads in the nonisolated world should initialize a unique context by calling

lcd_enter to interact with the LCDs. After that, the microkernel sets up a runtime, then

initializes a per thread CSpace and resources for the nonisolated thread to communicate

with the LCDs.

24

3.1.2 Interprocess Communication

We support two Interprocess Communication (IPC) mechanisms for LCDs to commu-

nicate amongst themselves and with the nonisolated part of the system.

• Synchronous IPC: The synchronous IPC is capability-mediated, provided by the

LCD microkernel for the LCDs, to request resources, establish regions of shared

memory, and to perform cross-domain calls. This mechanism requires both the send

and receiver to synchronize on the endpoint so that the microkernel can transfer the

contents from the sender to the receiver. But synchronous IPC is slow because it

requires a context switch into the microkernel. So we use them only in control-plane

operations and instead use the fast asynchronous IPC for fast data-plane activities.

• Fast, Asynchronous IPC: We pin isolated subsystems on different CPU cores and

use a fast cross-core communication mechanism to trigger call and reply invocations

between them. Motivated by Barrelfish [4], our design works by establishing a region

of shared memory between the sender and the receiver. Each asynchronous IPC

channel consists of two ring buffers: one for outgoing call messages and the other for

incoming reply messages. Since the IPC mechanism leverages the cache-coherence

protocol of the processor, the performance of cross-core communication depends on

the latency of the protocol. To achieve the lowest possible communication overhead,

we optimize the number of cache-coherence transactions. We ensure that every mes-

sage is cache-line aligned (64 bytes) and avoid shared producer-consumer pointers,

as they add two extra transitions per message. Instead, we depend on an explicit

state flag that signals available message and free slots. To send a message, the sender

first obtains a free slot from the ring buffer, prepares the message, and sets a flag to

indicate that the message is ready for receiving. The receiver, on another CPU core,

listens for a message by polling on the same slot until it sees a ready status of the

flag.

3.1.3 Interface Definition Language

We rely on an IDL to automatically generate all the inter-domain glue code and dis-

patch loops. The IDL is parsed by a compiler [37] to generate caller and callee glue code,

which allows transparent invocation of functions and synchronization of data structures

25

across domain boundaries. The glue layer translates the function invocations into Remote

Procedure Calls (RPC) using the IPC mechanism as its communication medium. It mar-

shals the parameters of function calls, translates them into IPC, and unmarshals return

values if any. All these events happen behind the scenes and provide an illusion to the

isolated code that it still invokes the real function.

We illustrate IDL with an example from the null block driver as shown in Figure 3.2.

The kernel function blk_mq_alloc_tag_set registers the driver with the MQ block layer

by passing a pointer to blk_mq_tag_set structure as its argument. In IDL, we use the

rpc keyword to represent functions. This keyword instructs the compiler to generate two

functions: a caller and a callee function. The caller has the same function signature as

the original kernel function, whereas the callee has the required information to retrieve

data from an IPC message. The IDL also defines the IPC mechanism to be used through

the means of channel keyword (not shown in Figure 3.2). Since synchronous communica-

tion is relatively slow due to context switch overhead, we use the fast asynchronous IPC

mechanism.

One of the fundamental properties of our design is that LCDs do not share any state

with the nonisolated part or among other LCDs by default. Instead, we allow LCDs

to maintain its own private hierarchy of data structures and synchronize them during

function invocations. In our example from Figure 3.2, the function blk_mq_alloc_tag_set

takes a pointer to the blk_mq_tag_set structure that describes the configuration param-

eters supported by the null block device. We support transparent synchronization of

data structure copies across domains through projections. A projection defines how a data

structure is projected into another domain by capturing the fields of a data structure that

will be marshaled and unmarshaled during function calls. The projection blk_mq_tag_set

lists the fields that will be used by the nonisolated kernel code to register the driver with

the MQ block layer. The IDL supports explicit [in] and [out] directional attributes to specify

the direction of flow, from the caller to callee or vice versa. The default direction is [in], i.e.,

all the fields are copied from the caller to the callee side. The compiler infers it from the

[alloc(callee)] qualifier. The alloc specifier instructs the IDL compiler to allocate a copy of

the projected type blk_mq_tag_set. As the data structure already exists on the caller side,

the callee keyword specifies to perform the allocation on the callee side. In most cases, the

26

LCDs refer the same data structure multiple times. In our example, the blk_mq_tag_set

is also accessed during a call to blk_mq_init_queue. We provide a mechanism of remote

reference to refer to a specific object during function invocation. The same remote reference

also identifies the object in its CSpace.

The IDL also implements support for exporting function pointers. In most parts of

the kernel, function pointers are used to support dynamic registration. In our example,

blk_mq_alloc_tag_set also registers a set of function pointers through the blk_mq_ops

data structure. For every function pointer, the IDL compiler generates caller and callee

code like normal functions. To implement cross-domain function pointers, while still

preserving the original semantics of function signatures, we implement a concept of hidden

arguments [20]. For every function pointer, the IDL compiler generates a trampoline func-

tion in the caller’s executable (nonisolated part) address space. The hidden arguments

specify the missing arguments require to perform a cross-domain call. But the caller

invokes the trampoline like any other function pointer.

Figure 3.1 shows the different components of isolation and Figure 3.3 highlights the

caller and callee stub code in interaction.

3.1.4 Kernel Modules

We implement LCDs as kernel modules. By doing so, we reuse the linking and loading

functionality provided by the Linux kernel. By mapping the kernel module to the same

guest virtual address as that of the host, we avoid relocating the symbols in the module.

In our design, we have two kernel modules, lcd and klcd, that fulfill the functionality of the

isolated code.

We compile the lcd kernel module with the isolated driver code, the liblcd library, and

the glue code. We also provide another module, boot, that loads the lcd module inside an

VT-x container.

We also have another module, klcd, that runs along with the nonisolated part of the

kernel. This module is mainly responsible for servicing the RPC requests from the lcd and

also to translate kernel/user process’s requests into an RPC to the lcd.

In both modules, the glue layer is responsible for intercepting the calls and translating

them into RPCs. The glue code comprises of two parts: a set of caller functions statically

27

defined to translate the function calls into RPC, and a callee dispatch loop that listens for the

incoming RPC requests. The dispatch loop is implemented using AC threads, which we

will discuss in the next section.

Figure 3.3 shows the interaction between lcd and klcd module to service a request from

the block layer.

3.1.5 AC Threads and ASYNC Runtime

In LCDs, we replace function calls with cross-domain calls. Even though we optimize

the cross-domain invocations for low latency, in most cases, it is still wasteful for the

caller to wait for a reply from the callee. We have seen that cross-domain invocations

take roughly around 380 to 1500 cycles. While it is long enough to be wasteful, it is still

short to yield the CPU through a context switch.

We implement a lightweight asynchronous thread language (AC) and a runtime, bor-

rowed from Barrelfish research OS [16], with extensions for asynchronous IPC [32]. The AC

provides a lightweight asynchronous functionality to C language using macros and GCC

extensions like nested functions. At the core of the AC language, there are two macros:

DO_FINISH and ASYNC, which enables us to create a runtime and spawn lightweight threads.

All invocations of ASYNC must happen within a DO_FINISH block, and it guarantees that all

asynchronous work will finish by the end of the block.

These threads are lightweight because a thread is only a stack frame and an instruction

pointer. In a scenario where there are more than one asynchronous threads, when one of

the blocks, the runtime checks to see if there are other any other pending threads. If so, the

runtime switches control to the unfinished thread and services it. This constitutes to the

asynchronous behavior.

The AC language also defines functions that can be used to yield an execution. They

are THCYield, THCYieldTo, etc. The main purpose of yielding is to suspend the current

execution path and pass control to another. We integrate these functions with the asyn-

chronous IPC mechanism [32] to improve the responsiveness of IPC to handle multiple

requests. We present an example of how the runtime is used to implement a dispatch loop

in Section 3.3.1.

28

3.2 Null Block Driver Architecture
Up to this point, we have discussed the different pieces of LCD architecture. In this

section, we put the various components of the LCD architecture into practice by isolating

the null block driver.

We chose to isolate the null block driver to understand the pure software overheads of

isolation. The null block driver does not interact with an actual storage medium, hence

the null name. Instead, it emulates the behavior of the fastest possible block device. The

emulated device allows us to study overheads of isolation without any artificial limits

of existing physical storage mediums. Moreover, these findings can be directly used to

decompose and implement an isolated NVMe subsystem.

In the next section, we will discuss about the various configurations of the driver and

its interface with the kernel. Figure 3.4 depicts the architecture of the null block driver.

3.2.1 Configurations

We configure the interface and behavior of the driver through the module parame-

ters exported by the driver. We restrict ourselves to a single hardware queue by setting

submit_queues = 1 because the current LCD architecture is single threaded. Although

we have the support to handle multiple hardware queues using a single thread in a round-

robin fashion, we leave that to future work.

We chose to configure the driver in such a way that it exposes the software overheads

of the MQ block layer. For instance, we do not configure the driver to emulate device inter-

rupts to signal completion. Instead, we signal completions immediately after processing

the I/O request to eliminate any device latency.

3.2.2 Interfaces

We configure the driver to interact with the MQ block layer (queue_mode = 2) because

of the several benefits discussed in the previous chapter. The line numbers mentioned in

below section refers to the null block driver source in Linux kernel v4.8.4 [13].

3.2.2.1 Initialization and Registration

We will describe the functions the driver uses during initialization to interact with the

kernel. We represent the line numbers of the functions within square braces.

29

• [805] register_blkdev: The driver registers a new block device (/dev/nullb0) with

the kernel.

• [820] null_add_dev: To interact with the MQ block layer, the driver does the fol-

lowing:

1. [674] blk_mq_alloc_tag_set: Registers the driver with the MQ block layer.

2. [678] blk_mq_init_queue: Allocates and initializes a request_queue to ex-

change I/O requests between the MQ block layer and the driver.

• [714] blk_queue_logical_block_size: Indicate the lowest possible block size (512

bytes) the device can address.

• [715] blk_queue_physical_block_size: Indicate the lowest possible sector size the

device can operate without reverting to read-modify-write operations.

• [727] alloc_disk_node: To allocate a disk node, struct gendisk, representing the

emulated disk.

• [733] set_capacity: To set the capacity of the disk.

• [743] add_disk: The driver populates the gendisk with a set of function pointers

and registers with the kernel.

3.2.2.2 I/O Path

The driver is ready to exchange I/O requests from the user application once it initializes

itself with the kernel successfully. The I/O path is defined by a set of function pointers reg-

istered by blk_mq_alloc_tag_set function. The following function pointers are exported

by the driver:

• queue_rq: Set to the function null_queue_rq, defined at line [354]. The MQ block

layer transfers I/O requests from the application process to the driver through this

interface.

• map_queue: Set to blk_mq_map_queue, defined at line [396]. This function initializes

the mapping between software and hardware queues in the MQ block layer.

30

• init_hctx: Set to null_init_hctx, defined at line [396]. It initializes a specific

hardware queue in the driver.

In the next section, we will describe our approach to isolate the interfaces and handle the

dependencies.

3.3 Isolated Null Block Driver
Our central objective is to run the unmodified null block driver inside an LCD. To

achieve this, we first analyze the interactions between the driver and the kernel, then

identify the functions and data structure dependencies. We develop IDL specifications

of the block driver interface, which consists of 68 lines of IDL code. Our isolated system

comprises three kernel modules, lcd, klcd, and the boot. The klcd module implements

the glue code and dispatch loop for the nonisolated part of the kernel. The module starts a

kernel thread to process IPC messages from the lcd. The lcd module loads the unmodified

driver into a VT-x container that creates a new kernel thread to execute the driver inside

the isolated domain. The boot module is responsible for basic initialization, loading, and

unloading of lcd and klcd modules. Figure 3.5 depicts the overall architecture of the

isolated null block driver.

3.3.1 Initialization

When the lcd and klcd modules boot, they initialize a CSpace for remote references and

set up their own address spaces. The boot module initializes a synchronous IPC channel

between them and invokes the module_init function of the driver. The driver continues to

execute its initialization routine and invokes the first cross-domain call, register_blkdev.

The glue code intercepts the call and transparently triggers an IPC message to the klcd

using the synchronous IPC channel set up by the boot module. Meanwhile, it also allocates

memory for the asynchronous IPC ring buffers, and initializes an exclusive asynchronous

IPC channel between the lcd and the klcd modules. Once the asynchronous IPC buffers

are initialized, the klcd enters into a dispatch loop, while the lcd continues to invoke other

initialization routines.

We present a simplified version of the dispatch loop in Figure 3.6. The dispatch loop

is implemented using the asynchronous runtime macros discussed earlier in this chapter

31

(refer to Section 3.1.5). The thc_ipc_poll_recv function listens for a message over the

asynchronous IPC channel represented by async_chnl. Once the channel receives a mes-

sage, it spawns an ASYNC thread to handle the message. When ASYNC blocks, the control

reaches to the immediate line of the ASYNC macro and the dispatch loop continues to listen

for other messages.

Once the dispatch loop is set up, the lcd continues to invoke its initialization routines

as mentioned in the Section 3.2.2.1. On a successful completion of register_blkdev func-

tion, the driver invokes blk_mq_alloc_tag_set to register with the MQ block layer and

blk_mq_init_queue to initialize a request_queue for the device. Successful completion of

these functions prepares the I/O interface between the MQ block layer and the driver. We

will discuss the isolation of I/O path in the next section.

3.3.2 I/O Path

We saw in Section 2.4.1 that the I/O requests submitted by an application process

enter the device driver through the queue_rq interface. The MQ block layer invokes

__blk_mq_run_hw_queue to flush the I/O requests from the hardware dispatch queues to

the driver. Figure 3.7 shows the function flow through the MQ block layer into the driver

and Figure 3.8 depicts the I/O request processing loop in the MQ block layer.

The isolated null block driver requires three cross-domains calls in the I/O path. First,

the MQ block layer invokes the queue_rq function pointer, which points to null_queue_rq

function inside the driver. The driver itself invokes two functions, blk_mq_start_request

and blk_mq_end_request, which represent the other two cross-domain calls in the I/O

path. The blk_mq_start_request function passes a pointer to request data structure back

to the MQ block layer to inform that the request processing has begun and I/O is ready to

be issued to the device. The MQ block layer associates a timer for this particular request to

ensure that if the completion for that request does not arrive in time, it can either abort the

I/O operation or re-queue the request again. On the other hand, the blk_mq_end_request

function informs the block layer that the I/O request is completed by the device, and

is now ready to remove any pending timers on the request and notify the application

process that submitted the I/O request.

32

3.3.3 Isolation Infrastructure

On top of the existing LCD infrastructure, we introduce essential features that allow

device drivers to communicate with application processes, share data buffers, and speed

up I/O processing loops by introducing asynchrony in the nonisolated kernel code.

3.3.3.1 Access to User Applications

Applications operate on devices by invoking system calls like open, close, ioctl, etc.

Device drivers expose a set of function pointers, called file operations in Linux, to allow

these system calls on devices. The isolated null block driver registers function pointers

for open and close during the call to add_disk function. We set up trampolines for these

function pointers in the glue code of the klcd module to translate function calls into IPC

messages.

In LCDs, an application thread in the nonisolated part has no information to access

an isolated subsystem. When an application thread invokes the open call on the null

block device (/dev/nullb0), we set up a per-thread context for this thread by calling

the lcd_enter library function. The context includes a per-thread CSpace, buffers for

synchronous IPC, and a state for the ASYNC runtime. We also initialize a dedicated

asynchronous IPC channel for each application thread that intends to communicate with

the isolated null block driver. We cannot allow the application thread to access the already

existing asynchronous IPC channel between the lcd and klcd module because the ring

buffers are lock-free queues dedicated for every producer-consumer pair.

3.3.3.2 Sharing Data Buffers

In contrast to the non-decomposed kernel, the isolated null block driver has no rights

over the memory of an application process that issues block I/O. To avoid expensive

page remapping operations from the user process’ memory to the lcd module, we require

the process to explicitly share a region of memory with the isolated null block driver.

The application can allocate data buffers for block I/O from the shared region. In the

current work, we implement this infrastructure inside the fio benchmarking application.

Alternatively, we also propose that a dedicated library in the user space can implement

malloc and free calls, managed by a simplified version of slab allocator [7] to provide this

infrastructure. An application process can use the LD_PRELOAD trick to route the standard

33

memory allocation calls to our library. We will describe the memory sharing protocol

implemented within the fio benchmarking application below:

• We instantiate a character device represented by /dev/nullb_user and register a set

of file_operations to facilitate open, mmap, and close on the device. Refer to Figure

3.9.

• We analyze the memory allocation scheme in fio and notice that the mem or iomemem

option can specify the type of memory allocation in the job file. For instance, we

can instruct fio to allocate memory using huge pages in the system by specifying

mem=mmaphuge.

• Similarly, we introduce another option, mem=mmapdevmem, to instruct fio to memory

map device memory and use it for allocating I/O buffers. The name of the device is

specified as mem=mmapdevmem:/dev/nullb_user in the job file.

• When fio invokes the mmap call to allocate memory for I/O buffers, it passes a size

that is a function of the maximum allowed block size multiplied by the I/O depth

for the job.

• We intercept the mmap call in the klcd module’s glue code, allocate memory pages

for the requested size, and map it into the address space of fio. At the same time,

we also volunteer the pages into lcd module and map them in a dedicated region of

address space within the lcd module.

• The data buffers are accessible within the lcd’s address space by an offset from

the base address of the memory region. To identify the corresponding I/O buffer

during the submission path, we calculate the relative offset of the data buffer on the

nonisolated part and marshal the value to lcd module. The same offset identifies the

buffer in lcd module’s address space.

• Since the null block driver does not access the pages of data buffer, we ignore these

fields in the isolated driver. In the case of a NVMe driver, these fields will aid in

programming the IOMMU for DMA operations.

34

• Finally, when fio performs cleanup of its resources, the allocated pages for the I/O

buffers are also released.

3.3.3.3 Introducing Asynchrony

We saw in Section 3.3.2 that the MQ block layer invokes the queue_rq function pointer

in a tight loop to flush I/O requests to the driver (refer to Figure 3.8). We also noticed that

the null block driver invokes blk_mq_start_request and blk_mq_end_request to process

a single I/O request.

In LCDs, we replace these function calls by cross-domain IPC requests. Even though

we aggressively optimize the IPC in most cases, it is wasteful to wait for a reply for

every queue_rq invocation. Instead, to effectively utilize the CPU cycles and to meet

the performance aspect of our goal, we introduce asynchrony in the kernel code. We

implement a parallel loop using the ASYNC primitives described in Section 3.1.5. Figure

3.10 depicts the asynchronous I/O request processing loop in the MQ block layer.

By introducing asynchrony, we still preserve the original semantics of the code and do

not re-implement the function in a message passing style. The ASYNC macro spawns a new

lightweight thread for handling an IPC call. When the call blocks, the control exits out of

the ASYNC block, and yields to the runtime (DO_FINISH) to dispatch pending requests in the

rq_list.

While profiling the I/O path in the isolated null block driver, we noticed that a single

queue_rq IPC request was consuming 5130 cycles. We will examine the timing in more

detail in the next chapter. The main reason for high isolation overhead is because the lcd

module is wasting CPU cycles while waiting for the responses of blk_mq_start_request

and blk_mq_end_request functions. To lower the cost of IPC, we introduce two optimiza-

tions:

• Weak return semantics: We asynchronously trigger both blk_mq_start_request

and blk_mq_end_request from the lcd module. Since the kernel implements both

of these as void functions, they do not return any value to the caller. We follow

weak return semantics, i.e., we do not wait for the IPC response of these functions

in the lcd module. We argue that it does not hurt the semantics of the driver code

because in a real scenario, the completions from any storage device arrive in an asyn-

35

chronous manner either via interrupts or by polling. So asynchronously dispatching

blk_mq_end_request is acceptable. We also ensure that the blk_mq_start_request

for a particular I/O request executes before blk_mq_end_request because of the

very nature of the asynchronous IPC message buffers.

• Optimizing asynchronous IPC: When the request processing loop (refer to Figure

3.10) has only a single I/O request, introducing a runtime around the loop adds extra

overhead in the IPC path. In such cases, we optimize the IPC routine to busy poll for

a reply instead of yielding back to the runtime to check for additional messages.

Figure 3.11 depicts the flow of an I/O request from a user application to the isolated

driver.

36

Null block driver
register_blkdev()

liblcd
Glue

MicrokernelkliblcdGlue

Null block LCD

Async
IPC Ring
Buffers

Linux Kernel

Non-isolated
part

Isolated part

Linux
Interface

VMCALL
Interface

register_blkdev() {
 ...
}

libfipc

Block layer Klcd module

Figure 3.1. Key components of isolation architecture

/∗ Original kernel function ∗/
int blk mq alloc tag set(struct blk mq tag set ∗set);

/∗ Equivalent IDL representation ∗/
rpc int blk mq alloc tag set(projection blk mq tag set [alloc(callee)] ∗set);

/∗ Data structure representation ∗/
projection <struct blk mq tag set> blk mq tag set {

unsigned int nr hw queues;
unsigned int queue depth;
...
projection blk mq ops [alloc(callee)] ∗ops;

}

/∗ Function pointer representation ∗/
projection <struct blk mq ops> blk mq ops {

rpc [alloc] int (∗queue rq fn)(projection blk mq hw ctx [alloc(caller)] ∗ctx,
projection blk mq queue data [alloc(caller)] ∗bd);

...
}

Figure 3.2. Snippet capturing IDL representation

37

Block Layer

Callee
dispatch

loop

Caller
code

Null block driver

ipc_recv queue_rq

Callee
dispatch

loop

Caller
code

lcd module
klcd moduleLinux kernel

mq_ops->queue_rq

Async IPC
Ring

Buffers

CPU 0CPU 1CPU n

...

Null block LCD

Figure 3.3. Caller and callee dispatch loop

38

FIO (Flexible I/O)

op
en

cl
os

e

M
Q

 B
lo

ck
 la

ye
r

..
S/W

queues

H/W
dispatch
queues

Requests

Direct I/O

io
_s

ub
m

it

aio VFS/Filesystem

BIOs

kernel

submit_bio

user

Blk Plug
(per process) MQ block

registration

I/O path

Core kernel
registration

Device
Operations
open,close

Core
kernel

Null Block driver

Emulated
Nvme device

BIOs

File
operations

CPU 1CPU n

...

Figure 3.4. Different components of the nonisolated null block driver

39

FIO (Flexible I/O)

op
en

cl
os

e

M
Q

 B
lo

ck
 la

ye
r

..
S/W

queues

H/W
dispatch
queues

Requests

Direct I/O

io
_s

ub
m

it

aio VFS/Filesystem

BIOs

kernel

submit_bio

user

Blk Plug
(per process)

MQ block
registration

I/O path

Core kernel
registration

Device
Operations
open,close

lcd module

Emulated
Nvme device

BIOs

File
operations

CPU 1CPU n

...

Glue
dispatch loop

Glue
code

l
i
b
l
c
d

l
i
b
l
c
d

Async IPC
Ring

Buffers

Glue
code Glue

dispatch loop

klcd module

Core
Kernel

Sync
endpoint

Figure 3.5. Architecture of the isolated null block driver

40

static void dispatch loop(void) {

int stop = 0;
int ret = 0;
struct fipc message ∗∗msg out;

DO FINISH(
while (!stop) {

...
ret = thc ipc poll recv(async chnl, msg out);
if (!ret) {

ASYNC(
ret = handle msg(msg out);
if (ret) {

LIBLCD ERR(”drv dispatch err”);
stop = 1;

});
} else if (ret != −EWOULDBLOCK) {

LIBLCD ERR(”async loop failed”);
stop = 1;
break;

}
...

}
);

}

Figure 3.6. Simplified version of the dispatch loop using ASYNC runtime

41

FIO (Flexible I/O)

op
en

cl
os

e

Direct I/O

io
_s

ub
m

it

aio VFS/Filesystem

BIOs

kernel

submit_bio

user

BIOs

M
Q

 B
lo

ck
 la

ye
r

..
S/W

queues

H/W
dispatch
queues

Request

Blk Plug
(per process)

blk_sq_make_request ()

__blk_mq_run_hw_queue()

blk_mq_flush_plug_list()

ctx

hctx

q->mq_ops->queue_rq()

Null Block driver I/O path

null_handle_cmd()

null_queue_rq()

blk_mq_start_request()

blk_mq_end_request()

end_cmd()

To MQ Block layer

To MQ Block layer

Figure 3.7. Function flow through the MQ block layer to the null block driver

42

static void blk mq run hw queue(struct blk mq hw ctx ∗hctx)
{

struct request queue ∗q = hctx−>queue;
struct request ∗rq;
LIST HEAD(rq list);
...
/∗ Touch any software queue that has pending entries. ∗/
flush busy ctxs(hctx, &rq list);
...
/∗ Now process all the entries, sending them to the driver. ∗/
queued = 0;
while (!list empty(&rq list)) {

struct blk mq queue data bd;
int ret;

rq = list first entry(&rq list, struct request, queuelist);
list del init(&rq−>queuelist);

bd.rq = rq;

ret = q−>mq ops−>queue rq(hctx, &bd);

switch (ret) {
case BLK MQ RQ QUEUE OK:

queued++;
break;

...
}
...

}
...

}

Figure 3.8. Simplified version of request processing loop in the MQ block layer

43

m
m

ap

kernel

user

klcd module

FIO
allocate_io_mem() {

if (td->o.mem_type == MEM_MMAPDEVMEM)
mmap();

}

;FIO job file

[global]
direct=1
filename=/dev/nullb0
iodepth=1
bs=4k
mem=mmapdevmem:/dev/nullb_user

;FIO job file

[global]
direct=1
filename=/dev/nullb0
iodepth=1
bs=4k
mem=mmapdevmem:/dev/nullb_user

/dev/nullb_user

nullb_user_mmap() {
alloc_pages()
vm_insert_page()
lcd_volunteer_pages()
lcd_mmap()

}

VFS

file_operations
(/dev/nullb_user)

register_chardev(“nullb_user”)
register_chardev(“nullb_user”)

nullb_lcd_mmap() {
lcd_map_virt()

}

Host Memory

lcd module

FIO's address space

lcd's address space

CSpace

CSpace

Figure 3.9. Memory sharing protocol between the application (fio) and the isolated null
block driver

44

static void blk mq run hw queue(struct blk mq hw ctx ∗hctx)
{

struct request queue ∗q = hctx−>queue;
struct request ∗rq;
LIST HEAD(rq list);
...
/∗ Touch any software queue that has pending entries. ∗/
flush busy ctxs(hctx, &rq list);
...
/∗ Now process all the entries, sending them to the driver. ∗/
queued = 0;

DO FINISH(
while (!list empty(&rq list)) {

struct blk mq queue data bd;
int ret;

rq = list first entry(&rq list, struct request, queuelist);
list del init(&rq−>queuelist);

bd.rq = rq;
ASYNC({

ret = q−>mq ops−>queue rq(hctx, &bd);

switch (ret) {
case BLK MQ RQ QUEUE OK:

queued++;
break;

...
}

});
...

});
...

}

Figure 3.10. Simplified version of the request processing loop implemented using
DO FINISH and ASYNC macros

45

FIO (Flexible I/O)

op
en

cl
os

e

Direct I/O

io
_s

ub
m

it

aio VFS/Filesystem

BIOs

kernel

user

M
Q

 B
lo

ck
 la

ye
r

..
S/W

queues

H/W
dispatch
queues

Blk Plug
(per process)

ctx

hctx

null_queue_rq()

submit_bio

... ASYNC
threads

Async IPC
Ring

Buffersq->mq_ops->queue_rq()

queue_rq_trampoline() {
thc_ipc_call()

}

Glue
dispatch loop

Glue
dispatch loop

null_handle_cmd()

blk_mq_start_request()

blk_mq_end_request()

end_cmd()

blk_mq_end_request()

blk_mq_start_request()

klcd module

lcd module

Figure 3.11. The flow of an I/O request from a user application to the driver through the
MQ block layer

CHAPTER 4

RESULTS AND EVALUATION

We compare the performance of the isolated null block driver to the native driver, i.e.,

the nonisolated driver in the Linux kernel. We profile the I/O path and experiment with

different block I/O size to understand the overheads of isolation.

4.1 Experiment Setup
We conduct our experiments on an Intel Xeon E5-4620 (2.20GHz) machine running

Linux kernel v4.8.4. We disable hyper-threading, turbo boost, and frequency scaling to

reduce the variance in benchmarking. To reduce the cache-coherency overheads on the IPC

path, we pin the lcd and klcd threads on dedicated CPU cores within the same NUMA

node.

4.2 I/O Load Generation
In our block device experiments, we rely on fio to generate I/O traffic. It is a widely

used standard I/O benchmarking tool that allows us to carefully tune different parameters

like I/O depth (io_depth) and block size (bs) for our tests. To set an optimal baseline

for our evaluation, we choose the configuration parameters that can give us a lowest

latency path to the driver. We use fio’s libaio engine (ioengine=libaio) to overlap I/O

submissions and enable the direct I/O flag (direct=1) to ensure raw device performance.

Even though our current LCD architecture can poll multiple IPC channels in a single

dispatch thread, we restrict the number of I/O submission threads to one (numjobs=1)

to understand the overheads of isolation induced by a single thread. In all our tests, we

use the memory allocation scheme described in Section 3.3.3.2. We also implement the

same data sharing mechanism in the native driver to keep the performance comparisons

consistent.

47

4.3 Performance Evaluation
We profile the I/O submission and completion path from the user application to the

driver and compare the timing of critical interfaces between the native and isolated driver.

We also present the latency and throughput metrics of fio to assess the I/O performance

of our isolated driver.

4.3.1 Timing Analysis

To measure the timing of critical functions in the I/O path, we configure fio to issue a

single block I/O of lowest possible size (512 bytes) using the libaio engine. We use the

rdtsc instruction provided by the architecture (x86) to profile these functions.

To submit an I/O request, fio issues the io_submit system call to the kernel. We saw

earlier (see Section 2.4.1 and 3.3.2) that the MQ block layer executes a request processing

loop within the __blk_mq_run_hw_queue function to flush the I/O requests to the driver.

We also saw that the request processing loop calls the queue_rq interface of the driver to

process a particular I/O request. We now present the timing comparison of these functions

between the native and isolated null block driver.

• Native driver: We notice that the io_submit system call consumes 5677 cycles in

user space. The __blk_mq_run_hw_queue function consumes 1439 cycles, which in-

clude the cost of the request processing loop (1140 cycles), queue_rq interface (1135

cycles), and the I/O processing functions blk_mq_start_request (155 cycles) and

blk_mq_end_request (973 cycles), respectively. Figure 4.1 shows the timing split up

in the native driver. It is important to note that, when io_submit returns to the user

space, the blk_mq_end_request has already executed, and the completion of the I/O

request is available. Later when fio looks for completions, it immediately finds the

required number of completions without any delay.

• Isolated driver: Recall that in the isolated null block driver, we replace the function

calls with cross-domain IPC requests. It is worthwhile to note that there are three

threads in action: fio’s I/O submission, lcd’s, and the klcd’s dispatch threads, each

pinned on separate CPU cores within the same NUMA node.

Our measurements show that the queue_rq IPC request consumes 5130 cycles, which

48

includes two IPC call-reply invocations for blk_mq_start_request (344 cycles) and

blk_mq_end_request (2300 cycles), respectively, as shown in Figure 4.2. The cost of

isolation is 2782 cycles because we wait for the responses of blk_mq_start_request

and blk_mq_end_request functions in the lcd module. With the optimizations dis-

cussed in Section 3.3.3.3, we reduce the cost of isolation significantly. The request

processing loop inside __blk_mq_run_hw_queue consumes 895 cycles, which is less

than the native driver’s 1140 cycles. The queue_rq IPC request consumes 600 cy-

cles, as shown in Figure 4.3. When we batch I/O requests, the request process-

ing loop takes 1315 cycles because of the overhead introduced by the ASYNC run-

time. It is worthy to note that the execution times of blk_mq_start_request and

blk_mq_end_request functions are not factored inside the 600 cycles. It also im-

plies that the io_submit system call returns to the user space without executing

blk_mq_start_request and blk_mq_end_request functions as in the case of the na-

tive driver.

4.3.2 Fio Benchmarks

To assess the I/O performance of our isolated null block driver, we rely on the through-

put and latency metrics reported by fio. We configure fio to batch I/O submissions and

poll for completions from user space. By polling for I/O completions directly from user

space, we eliminate the latency of a system call in the completion path. Apart from the

configuration parameters described in Section 4.2, we tune the I/O depth (io_depth) from

1 to 16 and vary the block size (bs) from 512 bytes to 4 MB. To experiment with throughput,

we batch I/O requests by setting iodepth_batch to the value of I/O depth. We experiment

with latency by issuing a single I/O request at a time and also try to retrieve up to the

whole submitted queue depth by polling directly from user space (userspace_reap=1). In

all the tests, we ensure that at least a million I/O requests are submitted to the driver. The

graphs shown in Figure 4.4, 4.5, and 4.6 compare the performance between the native and

isolated null block driver. The x-axis of the graphs represents the test case, which is of the

form block size-I/O depth. For instance, 512-16 indicates the test run with the block size of

512 bytes and I/O depth of 16. The values represent the average over five separate test

runs.

49

4.3.2.1 Isolation Overhead

We can see from the IOPS graph (Figure 4.4) that the native driver achieves 308K IOPS

for a single request of 512 bytes. In other words, a single I/O request takes 2.63µs to

complete, whereas our isolated driver achieves 264K IOPS (3.77µs). We incur an ad-

ditional overhead of 1.1µs (2500 cycles) due to isolation. We saw in the previous sec-

tion (Section 4.3.1) that the native driver finds I/O completions immediately because the

blk_mq_end_request function finishes during the io_submit call, whereas in the isolated

null block driver, the io_submit call returns to the user space before the MQ block layer

starts processing the I/O request. The isolated null block driver takes less time to submit

an I/O request, but it loses time while polling for completions. The submission and com-

pletion latency graphs shown in Figure 4.5 and 4.6 captures this effect. More importantly,

the I/O submission and completion happen on two different cores resulting in a remote

memory accesses to a bitmap tag.

For higher I/O depths (iodepth > 8), the isolated driver matches the performance of

the native driver. Moreover, for the block sizes of 1MB and higher, the isolated null block

driver is 3.2% faster due to the request pipelining introduced in the MQ block layer.

50

io_submit()

q->mq_ops->queue_rq()

blk_mq_start_request()

blk_mq_end_request()

1135 155

973

5677

...

null_queue_rq()

user
kernel

CPU CORE

Figure 4.1. Timing analysis of native null block driver

io_submit

q->mq_ops->queue_rq()

blk_mq_start_request()

5130

10482

klcdlcd

blk_mq_start_request()

blk_mq_end_request()

IPC_CALL null_queue_rq()

IPC_CALL

IPC_REPLYIPC_RECV

blk_mq_end_request() IPC_CALL

IPC_REPLYIPC_RECV

IPC_REPLY

344

2300

user
kernel

CPU CORE CPU CORE CPU CORE

Figure 4.2. Timing analysis of unoptimized isolated null block driver

51

io_submit

q->mq_ops->queue_rq()

blk_mq_start_request()

600

5400

klcdlcd

blk_mq_start_request()

blk_mq_end_request()

IPC_SEND null_queue_rq()

IPC_SEND

blk_mq_end_request() IPC_SEND

IPC_REPLY

344

2300

user
kernel

CPU CORE CPU CORE CPU CORE

Figure 4.3. Timing analysis of optimized isolated null block driver. Note that the functions
blk mq start request and blk mq end request execute in the background and its execution
time is not factored in the IPC cost

 0

 2

 4

5
1

2
-1

5
1

2
-8

5
1

2
-1

6

4
k
-1

4
k
-8

4
k
-1

6

1
6

k
-1

1
6

k
-8

1
6

k
-1

6

6
4

k
-1

6
4

k
-8

6
4

k
-1

6

1
M

-1

1
M

-8

1
M

-1
6

4
M

-1

4
M

-8

4
M

-1
6

 100

 200

 300

 400

 500

 600

IO
P

S
 (

k
)

Native
Isolated

Figure 4.4. IOPS

52

 0

 10

 20

 30

5
1

2
-1

5
1

2
-8

5
1

2
-1

6

4
k
-1

4
k
-8

4
k
-1

6

1
6

k
-1

1
6

k
-8

1
6

k
-1

6

6
4

k
-1

6
4

k
-8

6
4

k
-1

6

1
M

-1

1
M

-8

1
M

-1
6

4
M

-1

4
M

-8

4
M

-1
6

 1000

 2000

 3000

 4000

S
u

b
m

is
s
io

n
 l
a

te
n

c
y
 (

u
s
e

c
)

Native
Isolated

Figure 4.5. Submission latency

 0

 5

 10

 15

5
1

2
-1

5
1

2
-8

5
1

2
-1

6

4
k
-1

4
k
-8

4
k
-1

6

1
6

k
-1

1
6

k
-8

1
6

k
-1

6

6
4

k
-1

6
4

k
-8

6
4

k
-1

6

1
M

-1

1
M

-8

1
M

-1
6

4
M

-1

4
M

-8

4
M

-1
6

 200

 400

 600

 800

C
o

m
p

le
ti
o

n
 l
a

te
n

c
y
 (

u
s
e

c
)

Native
Isolated

Figure 4.6. Completion latency

CHAPTER 5

VULNERABILITY ANALYSIS

In this chapter, we examine the security guarantees of our LCD architecture by eval-

uating the effects of kernel vulnerabilities. We classify the Linux kernel vulnerabilities,

published in CVE database [31] in 2016, based on the type of attacks. We observe that out

of the 217 vulnerabilities, 54 are from device drivers, 33 from the network subsystem, and

22 in the filesystems.

To test our hypothesis that LCDs can provide strong isolation of driver code, we care-

fully examine the vulnerabilities found in device drivers and categorize them based on

the type of attacks. We choose a CVE under each type, analyze the source of the bug,

and evaluate its effect in our framework. Based on the evaluation, we generalize the

possibility of different attack scenarios. Table 5.1 summarizes our classification. Note that

some vulnerabilities allow for more than one kind of attack.

• Denial-of-service (DoS): Out of the 42 vulnerabilities that lead to DoS attacks, 23

of them are only DoS and the rest also allow for other attacks. Out of the 23, 13

are because of NULL pointer deferences in the code. Although our framework does

not confine DoS attacks, the effects of NULL pointer deferences do not lead to a

complete system crash. For instance, CVE-2016-3951 reports a double-free vulner-

ability that leads to a system-wide crash, but in LCDs, the crash is only limited

within its domain, and it does not propagate the fault to the nonisolated kernel. In

summary, LCDs cannot prevent DoS attacks from happening, but they do not result

in a complete system crash.

• Code execution: CVE-2016-8633 reports an arbitrary code execution vulnerability in

the FireWire driver allowing remote attackers to execute arbitrary code via crafted

fragmented packets. The driver lacked input validation while handling incoming

fragmented datagrams, which led to a copy of data past the datagram buffer, en-

54

abling the attacker to execute code in kernel memory. In LCDs, the code execution

is limited to resources within an isolated domain. In the worst case, Return-oriented

programming (ROP) attacks can be constructed using the VMCALL interface, but the

adversary will be not able to volunteer arbitrary kernel or write to arbitrary kernel

memory. Therefore, LCDs completely weaken code execution to DoS.

• Buffer overflow and memory corruption: LCDs weaken both buffer overflow and

memory corruption to DoS. For instance, CVE-2016-9083 reports a memory corrup-

tion vulnerability caused due to improper sanitation of user-supplied arguments.

LCDs cannot prevent memory corruption, but it can confine the effect within its

address space. LCDs can trigger an EPT fault restricting the fault within its domain.

The same applies for CVE-2016-5829, which reports a heap overflow caused because

of improper validation of user-supplied values.

• Information leak: CVE-2016-0723 reports information leak from kernel memory

caused because of a race condition in accessing a data structure pointer. In LCDs,

we replicate the data structures. Thus, the leak is restricted within LCD’s address

space. On a similar note, CVE-2016-4482 and CVE-2015-8964 also fall in the same

category.

• Gain privileges: In CVE-2016-2067, the GPU driver erroneously interprets read per-

missions and marks user pages as writable by the GPU. An attacker can successfully

map shared libraries with write permissions and modify the code pages to gain privi-

leges. In LCDs, we would still mark the user requested pages with write permissions

and we do not have a way to prevent this attack.

We show from the set of 54 driver vulnerabilities that LCDs can contain code execution,

buffer overflow, and memory corruption attacks by weakening them to a DoS and still keep

the rest of the kernel unaffected. We restrict information leak attacks within the LCD. In

the worst case, if the LCD maps a set of kernel pages into its address space, an attacker can

potentially leak that information. With privilege escalation attacks, we saw corner cases

where the current LCD architecture is not capable of handling them. We also observed that

improper handling of ioctl calls from userspace was one of the primary sources of bugs

55

in drivers. At this point, LCDs do not have the infrastructure to handle ioctl calls, but

doing so in future requires a much more profound analysis of these vulnerabilities.

Table 5.1. Vulnerabilities in device drivers classified based on the type of attack

DoS
Code

execution
Buffer

overflow
Memory

corruption
Information

leak
Gain

privileges

42 2 13 7 7 8

CHAPTER 6

RELATED WORK

During the past several years, multiple projects have focused on decomposing an OS

for improved security and reliability [14, 23, 30, 40]. We classify the different approaches as

follows:

• Protection domains: Several approaches decompose the kernel to isolate kernel com-

ponents into protection domains. Nooks [40] isolates unmodified device drivers

inside the Linux kernel by creating lightweight protection domains. It uses hardware

page tables to restrict write access to kernel pages. Similar to LCDs, it also maintains

and synchronizes private copies of kernel objects; however, the synchronization code

is built manually. In LCDs, we use an IDL to automate the generation of the syn-

chronization code. Moreover, Nooks requires switching page tables on each context

switch between the protection domain and the core kernel, so the performance over-

head is quite significant.

Sawmill [15] decomposes the Linux kernel as user-level servers on top of the L4 mi-

crokernel. Similar to LCDs, it relies on an IDL compiler (Flick and IDL4) to generate

stub-code. Although Sawmill promises near-native performance, it is not clear how

much code had to be manually built to factor subsystems into user-level. Unfortu-

nately, their implementation is not openly available for analysis.

SIDE [39] runs unmodified drivers in kernel space but by lowering the privileges.

A helper module facilitates driver’s communication with the kernel and is imple-

mented via system calls. Unlike LCDs, the helper module is built manually. SIDE

achieves near native performance at an increased CPU overhead.

• User-space device drivers: Some researchers [23] propose the idea of running device

drivers as user space applications. Microkernel-based systems like L4 [17] and Minix

57

3 [18] take this approach.

Microdrivers [14] partition a device driver into a performance critical k-driver and a

noncritical u-driver. While the performance overhead is close to zero, they do not

isolate the kernel component. A bug in the performance critical kernel part can still

crash the entire system. This approach requires a lot of engineering effort to rewrite

drivers as opposed to reusing device drivers of a more mature monolithic kernel

such as Linux.

SUD [8] runs unmodified device drivers as user processes in a user mode Linux

(UML) infrastructure. For every unmodified driver, a kernel proxy driver is used

to handle the corresponding device and to channel user requests. To avoid the over-

head of context-switches, SUD uses message queues. SUD provides strong isolation

guarantees by achieving near-native performance, but it incurs more than two times

CPU overhead. Moreover, a kernel mode proxy driver has to be manually developed

for implementing a user driver.

• Hardware virtualization: Alternatively, Sumpf et al. [38] and Fraser et al. [12]

achieve device driver isolation by running unmodified driver code in a virtualized

container called a Driver Domain (DD). DD has a back end driver that multiplexes

I/O from different front end drivers running in separate virtual domains over the

real device driver. The problem with both of the approaches is that they run a full

OS stack alongside the device driver to handle the dependencies of the driver.

VirtuOS [30] employs hardware virtualization to partition kernel components into

service domains. Each domain implements a subset of the kernel’s functionality like

storage and networking. The system is built on top of Xen [2] and relies on the shared

memory capabilities provided by Xen to establish communication between different

domains. Though the service domains provide full protection and survive failures,

they run a near stock version of the kernel to provide an execution environment.

• Software fault isolation: Another method to achieve isolation is by using software

fault isolation (SFI) techniques [9, 27, 36, 41]. But unfortunately, these techniques

either compromise performance in favor of isolation or require modifications to ex-

isting code. For instance, LXFI[27] uses SFI to isolate kernel modules from the core

58

kernel. To use LXFI, device driver programmers must first specify the security policy

for a kernel API using source-level annotations. LXFI then guarantees security with

the help of two components: a compiler plugin that inserts calls and checks into the

code and a runtime that validates whether a module has necessary privileges for any

given operation. This technique is not transparent to existing code, and it involves

nontrivial modifications adding a layer of complexity during debugging.

• Language-based isolation: Finally, researchers have also tried a more radical ap-

proach to isolation by implementing the kernel in a type-safe language. Projects like

Singularity [19] and Spin [5] take this approach. In Singularity, researchers imple-

ment a microkernel using an extension of the C# language, whereas Spin leverages

the features of the Modula-3 programming language. Both of these approaches suffer

performance nondeterminism due to managed runtime and garbage collection (GC).

Hence, these solutions have remained impractical.

Recent developments in programming languages have led to a new systems pro-

gramming language called Rust. Rust enforces type and memory safety through a

restricted ownership model and has zero GC overhead. In our other work [1], we

show that safe features of Rust can be used for fault isolation. Also, recent projects

[25] show that Rust can be used to build a practical embedded system OS.

Although Rust offers type safety at a zero performance overhead, rewriting a kernel

from scratch takes years of development effort. Moreover, the single ownership

model restricts the ability to express cyclic data like linked lists, so many of the

low-level data structures have to remain unsafe.

CHAPTER 7

CONCLUSIONS

In this thesis, we augment the LCD architecture with useful features to isolate high-

performance device drivers. Our work motivation was that the existing driver isolation

techniques either compromise performance to safety or require significant development

effort. We demonstrated by developing an isolated null block driver that unmodified

drivers can be isolated with little effort while not compromising performance. Although

additional infrastructure like multithreading and interrupts may be required to isolate

other driver subsystems, we think that LCDs will remain lightweight. We also anticipate

that future trends in OS design will move toward a distributed kernel design, where

subsystems are pinned to specific resources in the system. We believe that it is entirely

feasible to transition into a distributed kernel model while still reusing code of a mature

monolithic kernel like Linux.

7.1 Limitations
In the current architecture, we restrict ourselves to a single submission thread, because

the LCDs are single threaded. Although LCDs can listen to multiple IPC channels in a

round-robin fashion, we think that by making LCDs multithreaded, we can arrive at new

design possibilities.

The current implementation of isolated null block driver requires two CPU cores. We

explored the idea of using the logical core within the same CPU to pin one of these tasks,

but we did not see any performance gains with this approach. One other idea could have

been to relinquish the CPU core to other tasks in the system, but we leave this to future

work.

60

7.2 Future Work
Armed with the lessons learned from our current work, we plan to isolate the NVMe

driver in the future. Our initial analysis brings out some of the missing features like

timers, workqueues, support for Direct Memory Access (DMA), and interrupts. We require

support for direct device assignment within LCDs, which includes the ability to program

the IOMMU and handle interrupts without exits to the microkernel.

Finally, although the IDL compiler automatically generates the glue code, we still re-

quire a manual analysis of the kernel code to generate the IDL. Moreover, the current

IDL compiler cannot handle complex patterns like circular dependency of data structures.

We believe that by improving the IDL compiler and by eliminating the manual effort to

generate IDL can help to decompose other complex subsystems in the kernel.

REFERENCES

[1] A. Balasubramanian, M. S. Baranowski, A. Burtsev, A. Panda, Z. Rakamarić,

and L. Ryzhyk, System programming in rust: Beyond safety, in Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, HotOS ’17, New York, NY, USA, 2017,
ACM, pp. 156–161.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, Xen and the art of virtualization, in Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, New York,
NY, USA, 2003, ACM, pp. 164–177.

[3] S. Bauer, Fip-see: A low latency, high throughput IPC mechanism, tech. rep., 2016.

[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,

A. Schüpbach, and A. Singhania, The multikernel: A new os architecture for scalable
multicore systems, in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, New York, NY, USA, 2009, ACM, pp. 29–44.

[5] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,

C. Chambers, and S. Eggers, Extensibility safety and performance in the spin operat-
ing system, in Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, New York, NY, USA, 1995, ACM, pp. 267–283.

[6] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, Linux block io: Introducing multi-
queue ssd access on multi-core systems, in Proceedings of the 6th International Systems
and Storage Conference, SYSTOR ’13, New York, NY, USA, 2013, ACM, pp. 22:1–
22:10.

[7] J. Bonwick, The slab allocator: An object-caching kernel memory allocator, in Proceedings
of the USENIX Summer 1994 Technical Conference on USENIX Summer 1994 Techni-
cal Conference - Volume 1, USTC’94, Berkeley, CA, USA, 1994, USENIX Association,
pp. 6–6.

[8] S. Boyd-Wickizer and N. Zeldovich, Tolerating malicious device drivers in linux, in Pro-
ceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’10, Berkeley, CA, USA, 2010, USENIX Association, pp. 9–9.

[9] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,

P. Barham, and R. Black, Fast byte-granularity software fault isolation, in Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09,
New York, NY, USA, 2009, ACM, pp. 45–58.

[10] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, and Q. Zhang, Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks, in Proceedings of the 7th Conference on USENIX

62

Security Symposium - Volume 7, SSYM’98, Berkeley, CA, USA, 1998, USENIX Asso-
ciation, pp. 5–5.

[11] Eyal Itkin, Cve 2016-8633: Linux kernel firewire driver remote code execution. https://
eyalitkin.wordpress.com/2016/11/06/cve-publication-cve-2016-8633/, 2016.

[12] K. FRASER, Safe hardware access with the xen virtual machine monitor, in Proceedings of
the 1st Workshop on Operating System and Architectural Support for the On-demand
IT InfraStructure, (OASIS), 2004.

[13] Free electrons, Null block driver. http://elixir.free-electrons.com/linux/v4.
8.4/source/drivers/block/null_blk.c.

[14] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and S. Jha, The
design and implementation of microdrivers, in ACM SIGARCH Computer Architecture
News, vol. 36, ACM, 2008, pp. 168–178.

[15] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone, V. Uhlig,

J. E. Tidswell, L. Deller, and L. Reuther, The sawmill multiserver approach, in
Proceedings of the 9th Workshop on ACM SIGOPS European Workshop: Beyond the
PC: New Challenges for the Operating System, EW 9, New York, NY, USA, 2000,
ACM, pp. 109–114.

[16] T. Harris, M. Abadi, R. Isaacs, and R. McIlroy, Ac: composable asynchronous io for
native languages, ACM SIGPLAN Notices, 46 (2011), pp. 903–920.

[17] G. Heiser and K. Elphinstone, L4 microkernels: The lessons from 20 years of research and
deployment, ACM Trans. Comput. Syst., 34 (2016), pp. 1:1–1:29.

[18] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, Minix 3: A
highly reliable, self-repairing operating system, ACM SIGOPS Operating Systems Review,
40 (2006), pp. 80–89.

[19] G. C. Hunt and J. R. Larus, Singularity: rethinking the software stack, ACM SIGOPS
Operating Systems Review, 41 (2007), pp. 37–49.

[20] C. Jacobsen, Lightweight capability domains: Toward decomposing the linux kernel, Mas-
ter’s thesis, University of Utah, 2016.

[21] Jens Axboe, Flexible i/o generator. https://github.com/axboe/fio/blob/master/

HOWTO.

[22] Jonathan Corbet, The iov iter interface. https://lwn.net/Articles/625077/, 2014.

[23] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray, L. Macpherson, D. Potts,

Y.-T. Shen, K. Elphinstone, and G. Heiser, User-level device drivers: Achieved perfor-
mance, Journal of Computer Science and Technology, 20 (2005), pp. 654–664.

[24] J. Levin, Mac OS X and iOS Internals: To the Apple’s Core, Wrox, 2012.

[25] A. Levy, B. Campbell, B. Ghena, P. Pannuto, P. Dutta, and P. Levis, The case for
writing a kernel in rust, in Proceedings of the 8th Asia-Pacific Workshop on Systems,
ACM, 2017, p. 1.

63

[26] R. Love, Linux System Programming: Talking Directly to the Kernel and C Library,
O’Reilly Media, Inc., 2007.

[27] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek,
Software fault isolation with api integrity and multi-principal modules, in Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles, ACM, 2011,
pp. 115–128.

[28] R. McDougall and J. Mauro, Solaris Internals: Solaris 10 and OpenSolaris Kernel
Architecture, Prentice Hall, 2006.

[29] M. K. McKusick, G. V. Neville-Neil, and R. N. Watson, The Design and Implemen-
tation of the FreeBSD Operating System, Addison-Wesley Professional, 2014.

[30] R. Nikolaev and G. Back, Virtuos: An operating system with kernel virtualization, in
Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples, ACM, 2013, pp. 116–132.

[31] S. Özkan, Linux kernel vulnerability statistics. http://www.cvedetails.com/product/
47/Linux-Linux-Kernel.html?vendor_id=33.

[32] M. Quigley, Extensions to barrelfish asynchronous c, tech. rep., 2016.

[33] W. River, Vxworks programmer’s guide, 2003.

[34] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, Return-oriented programming:
Systems, languages, and applications, ACM Transactions on Information and System
Security (TISSEC), 15 (2012), p. 2.

[35] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, On the
effectiveness of address-space randomization, in Proceedings of the 11th ACM Conference
on Computer and Communications Security, CCS ’04, New York, NY, USA, 2004,
ACM, pp. 298–307.

[36] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, Enforcing kernel security
invariants with data flow integrity, in Proceedings of the 23th Annual Network and
Distributed System Security Symposium, 2016.

[37] S. Spall, kIDL: interface definition language for the kernel, tech. rep., 2016.

[38] S. Sumpf and J. Brakensiek, Device driver isolation within virtualized embedded plat-
forms, in 2009 6th IEEE Consumer Communications and Networking Conference,
IEEE, 2009, pp. 1–5.

[39] Y. Sun and T.-c. Chiueh, Side: isolated and efficient execution of unmodified device
drivers, in Dependable Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP
International Conference on, IEEE, 2013, pp. 1–12.

[40] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers, Nooks: An architecture for
reliable device drivers, in Proceedings of the 10th Workshop on ACM SIGOPS European
Workshop, EW 10, New York, NY, USA, 2002, ACM, pp. 102–107.

[41] T. Yoshimura, A study on faults and error propagation in the linux operating system,
(2016).

